This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Walks, paths and cycles
Trails
trlsonwlkon
Metamath Proof Explorer
Description: A trail between two vertices is a walk between these vertices.
(Contributed by Alexander van der Vekens , 5-Nov-2017) (Revised by AV , 7-Jan-2021)
Ref
Expression
Assertion
trlsonwlkon
⊢ F A TrailsOn ⁡ G B P → F A WalksOn ⁡ G B P
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢ Vtx ⁡ G = Vtx ⁡ G
2
1
trlsonprop
⊢ F A TrailsOn ⁡ G B P → G ∈ V ∧ A ∈ Vtx ⁡ G ∧ B ∈ Vtx ⁡ G ∧ F ∈ V ∧ P ∈ V ∧ F A WalksOn ⁡ G B P ∧ F Trails ⁡ G P
3
simp3l
⊢ G ∈ V ∧ A ∈ Vtx ⁡ G ∧ B ∈ Vtx ⁡ G ∧ F ∈ V ∧ P ∈ V ∧ F A WalksOn ⁡ G B P ∧ F Trails ⁡ G P → F A WalksOn ⁡ G B P
4
2 3
syl
⊢ F A TrailsOn ⁡ G B P → F A WalksOn ⁡ G B P