This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Walks, paths and cycles
Trails
trlsonprop
Metamath Proof Explorer
Description: Properties of a trail between two vertices. (Contributed by Alexander
van der Vekens , 5-Nov-2017) (Revised by AV , 7-Jan-2021) (Proof
shortened by AV , 16-Jan-2021)
Ref
Expression
Hypothesis
trlsonfval.v
⊢ V = Vtx ⁡ G
Assertion
trlsonprop
⊢ F A TrailsOn ⁡ G B P → G ∈ V ∧ A ∈ V ∧ B ∈ V ∧ F ∈ V ∧ P ∈ V ∧ F A WalksOn ⁡ G B P ∧ F Trails ⁡ G P
Proof
Step
Hyp
Ref
Expression
1
trlsonfval.v
⊢ V = Vtx ⁡ G
2
1
istrlson
⊢ A ∈ V ∧ B ∈ V ∧ F ∈ V ∧ P ∈ V → F A TrailsOn ⁡ G B P ↔ F A WalksOn ⁡ G B P ∧ F Trails ⁡ G P
3
2
3adantl1
⊢ G ∈ V ∧ A ∈ V ∧ B ∈ V ∧ F ∈ V ∧ P ∈ V → F A TrailsOn ⁡ G B P ↔ F A WalksOn ⁡ G B P ∧ F Trails ⁡ G P
4
df-trlson
⊢ TrailsOn = g ∈ V ⟼ a ∈ Vtx ⁡ g , b ∈ Vtx ⁡ g ⟼ f p | f a WalksOn ⁡ g b p ∧ f Trails ⁡ g p
5
1 3 4
wksonproplem
⊢ F A TrailsOn ⁡ G B P → G ∈ V ∧ A ∈ V ∧ B ∈ V ∧ F ∈ V ∧ P ∈ V ∧ F A WalksOn ⁡ G B P ∧ F Trails ⁡ G P