This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem tpfi

Description: An unordered triple is finite. (Contributed by Mario Carneiro, 28-Sep-2013)

Ref Expression
Assertion tpfi A B C Fin

Proof

Step Hyp Ref Expression
1 df-tp A B C = A B C
2 prfi A B Fin
3 snfi C Fin
4 unfi A B Fin C Fin A B C Fin
5 2 3 4 mp2an A B C Fin
6 1 5 eqeltri A B C Fin