This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem topontopon

Description: A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion topontopon J TopOn X J TopOn J

Proof

Step Hyp Ref Expression
1 topontop J TopOn X J Top
2 toptopon2 J Top J TopOn J
3 1 2 sylib J TopOn X J TopOn J