This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem topontop

Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion topontop J TopOn B J Top

Proof

Step Hyp Ref Expression
1 istopon J TopOn B J Top B = J
2 1 simplbi J TopOn B J Top