This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Terminal objects are essentially unique (weak form), i.e. if A and B are terminal objects, then A and B are isomorphic. Proposition 7.6 of Adamek p. 103. (Contributed by AV, 18-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termoeu1.c | ||
| termoeu1.a | |||
| termoeu1.b | |||
| Assertion | termoeu1w |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termoeu1.c | ||
| 2 | termoeu1.a | ||
| 3 | termoeu1.b | ||
| 4 | 1 2 3 | termoeu1 | |
| 5 | euex | ||
| 6 | 4 5 | syl | |
| 7 | eqid | ||
| 8 | eqid | ||
| 9 | termoo | ||
| 10 | 1 2 9 | sylc | |
| 11 | termoo | ||
| 12 | 1 3 11 | sylc | |
| 13 | 7 8 1 10 12 | cic | |
| 14 | 6 13 | mpbird |