This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem tbwlem5

Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion tbwlem5 φ ψ φ

Proof

Step Hyp Ref Expression
1 tbw-ax2 φ ψ φ
2 tbw-ax1 ψ φ φ ψ
3 1 2 tbwsyl φ φ ψ
4 tbwlem1 φ φ ψ φ φ ψ
5 3 4 ax-mp φ φ ψ
6 tbwlem4 φ φ ψ φ ψ φ
7 5 6 ax-mp φ ψ φ