This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tbwlem5 | |- ( ( ( ph -> ( ps -> F. ) ) -> F. ) -> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tbw-ax2 | |- ( ph -> ( ps -> ph ) ) |
|
| 2 | tbw-ax1 | |- ( ( ps -> ph ) -> ( ( ph -> F. ) -> ( ps -> F. ) ) ) |
|
| 3 | 1 2 | tbwsyl | |- ( ph -> ( ( ph -> F. ) -> ( ps -> F. ) ) ) |
| 4 | tbwlem1 | |- ( ( ph -> ( ( ph -> F. ) -> ( ps -> F. ) ) ) -> ( ( ph -> F. ) -> ( ph -> ( ps -> F. ) ) ) ) |
|
| 5 | 3 4 | ax-mp | |- ( ( ph -> F. ) -> ( ph -> ( ps -> F. ) ) ) |
| 6 | tbwlem4 | |- ( ( ( ph -> F. ) -> ( ph -> ( ps -> F. ) ) ) -> ( ( ( ph -> ( ps -> F. ) ) -> F. ) -> ph ) ) |
|
| 7 | 5 6 | ax-mp | |- ( ( ( ph -> ( ps -> F. ) ) -> F. ) -> ph ) |