This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sylan9bbr

Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995)

Ref Expression
Hypotheses sylan9bbr.1 φ ψ χ
sylan9bbr.2 θ χ τ
Assertion sylan9bbr θ φ ψ τ

Proof

Step Hyp Ref Expression
1 sylan9bbr.1 φ ψ χ
2 sylan9bbr.2 θ χ τ
3 1 2 sylan9bb φ θ ψ τ
4 3 ancoms θ φ ψ τ