This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
svrelfun
Metamath Proof Explorer
Description: A single-valued relation is a function. (See fun2cnv for
"single-valued.") Definition 6.4(4) of TakeutiZaring p. 24.
(Contributed by NM , 17-Jan-2006)
Ref
Expression
Assertion
svrelfun
⊢ Fun ⁡ A ↔ Rel ⁡ A ∧ Fun ⁡ A -1 -1
Proof
Step
Hyp
Ref
Expression
1
dffun6
⊢ Fun ⁡ A ↔ Rel ⁡ A ∧ ∀ x ∃ * y x A y
2
fun2cnv
⊢ Fun ⁡ A -1 -1 ↔ ∀ x ∃ * y x A y
3
2
anbi2i
⊢ Rel ⁡ A ∧ Fun ⁡ A -1 -1 ↔ Rel ⁡ A ∧ ∀ x ∃ * y x A y
4
1 3
bitr4i
⊢ Fun ⁡ A ↔ Rel ⁡ A ∧ Fun ⁡ A -1 -1