This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Words over a set
Definitions and basic theorems
sswrd
Metamath Proof Explorer
Description: The set of words respects ordering on the base set. (Contributed by Stefan O'Rear , 15-Aug-2015) (Revised by Mario Carneiro , 26-Feb-2016)
(Proof shortened by AV , 13-May-2020)
Ref
Expression
Assertion
sswrd
⊢ S ⊆ T → Word S ⊆ Word T
Proof
Step
Hyp
Ref
Expression
1
fss
⊢ w : 0 ..^ w ⟶ S ∧ S ⊆ T → w : 0 ..^ w ⟶ T
2
1
expcom
⊢ S ⊆ T → w : 0 ..^ w ⟶ S → w : 0 ..^ w ⟶ T
3
iswrdb
⊢ w ∈ Word S ↔ w : 0 ..^ w ⟶ S
4
iswrdb
⊢ w ∈ Word T ↔ w : 0 ..^ w ⟶ T
5
2 3 4
3imtr4g
⊢ S ⊆ T → w ∈ Word S → w ∈ Word T
6
5
ssrdv
⊢ S ⊆ T → Word S ⊆ Word T