This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Words over a set
Definitions and basic theorems
snopiswrd
Metamath Proof Explorer
Description: A singleton of an ordered pair (with 0 as first component) is a word.
(Contributed by AV , 23-Nov-2018) (Proof shortened by AV , 18-Apr-2021)
Ref
Expression
Assertion
snopiswrd
⊢ S ∈ V → 0 S ∈ Word V
Proof
Step
Hyp
Ref
Expression
1
0zd
⊢ S ∈ V → 0 ∈ ℤ
2
id
⊢ S ∈ V → S ∈ V
3
1 2
fsnd
⊢ S ∈ V → 0 S : 0 ⟶ V
4
fzo01
⊢ 0 ..^ 1 = 0
5
4
feq2i
⊢ 0 S : 0 ..^ 1 ⟶ V ↔ 0 S : 0 ⟶ V
6
3 5
sylibr
⊢ S ∈ V → 0 S : 0 ..^ 1 ⟶ V
7
iswrdi
⊢ 0 S : 0 ..^ 1 ⟶ V → 0 S ∈ Word V
8
6 7
syl
⊢ S ∈ V → 0 S ∈ Word V