This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
ssexnelpss
Metamath Proof Explorer
Description: If there is an element of a class which is not contained in a subclass,
the subclass is a proper subclass. (Contributed by AV , 29-Jan-2020)
Ref
Expression
Assertion
ssexnelpss
⊢ A ⊆ B ∧ ∃ x ∈ B x ∉ A → A ⊂ B
Proof
Step
Hyp
Ref
Expression
1
df-nel
⊢ x ∉ A ↔ ¬ x ∈ A
2
ssnelpss
⊢ A ⊆ B → x ∈ B ∧ ¬ x ∈ A → A ⊂ B
3
2
expdimp
⊢ A ⊆ B ∧ x ∈ B → ¬ x ∈ A → A ⊂ B
4
1 3
biimtrid
⊢ A ⊆ B ∧ x ∈ B → x ∉ A → A ⊂ B
5
4
rexlimdva
⊢ A ⊆ B → ∃ x ∈ B x ∉ A → A ⊂ B
6
5
imp
⊢ A ⊆ B ∧ ∃ x ∈ B x ∉ A → A ⊂ B