This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equality theorem for substitution. (Contributed by NM, 16-May-1993) Revise df-sb . (Revised by BJ, 22-Dec-2020) (Proof shortened by Wolf Lammen, 3-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbequ2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsb | ||
| 2 | 1 | biimpi | |
| 3 | equvinva | ||
| 4 | equcomi | ||
| 5 | sp | ||
| 6 | 4 5 | imim12i | |
| 7 | 6 | impcomd | |
| 8 | 7 | aleximi | |
| 9 | 2 3 8 | syl2im | |
| 10 | ax5e | ||
| 11 | 9 10 | syl6com |