This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sbco2v

Description: A composition law for substitution. Version of sbco2 with disjoint variable conditions but not requiring ax-13 . (Contributed by NM, 30-Jun-1994) (Revised by Wolf Lammen, 29-Apr-2023)

Ref Expression
Hypothesis sbco2v.1 z φ
Assertion sbco2v y z z x φ y x φ

Proof

Step Hyp Ref Expression
1 sbco2v.1 z φ
2 1 nfsbv z y x φ
3 sbequ z = y z x φ y x φ
4 2 3 sbiev y z z x φ y x φ