This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Conversion of implicit substitution to explicit class substitution,
deduction form. (Contributed by NM, 13-Dec-2014)
|
|
Ref |
Expression |
|
Hypotheses |
sbcied2.1 |
|
|
|
sbcied2.2 |
|
|
|
sbcied2.3 |
|
|
Assertion |
sbcied2 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcied2.1 |
|
| 2 |
|
sbcied2.2 |
|
| 3 |
|
sbcied2.3 |
|
| 4 |
|
id |
|
| 5 |
4 2
|
sylan9eqr |
|
| 6 |
5 3
|
syldan |
|
| 7 |
1 6
|
sbcied |
|