This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
sbc2iedv
Metamath Proof Explorer
Description: Conversion of implicit substitution to explicit class substitution.
(Contributed by NM , 16-Dec-2008) (Proof shortened by Mario Carneiro , 18-Oct-2016)
Ref
Expression
Hypotheses
sbc2iedv.1
⊢ A ∈ V
sbc2iedv.2
⊢ B ∈ V
sbc2iedv.3
⊢ φ → x = A ∧ y = B → ψ ↔ χ
Assertion
sbc2iedv
⊢ φ → [ ˙ A / x ] ˙ [ ˙ B / y ] ˙ ψ ↔ χ
Proof
Step
Hyp
Ref
Expression
1
sbc2iedv.1
⊢ A ∈ V
2
sbc2iedv.2
⊢ B ∈ V
3
sbc2iedv.3
⊢ φ → x = A ∧ y = B → ψ ↔ χ
4
1
a1i
⊢ φ → A ∈ V
5
2
a1i
⊢ φ ∧ x = A → B ∈ V
6
3
impl
⊢ φ ∧ x = A ∧ y = B → ψ ↔ χ
7
5 6
sbcied
⊢ φ ∧ x = A → [ ˙ B / y ] ˙ ψ ↔ χ
8
4 7
sbcied
⊢ φ → [ ˙ A / x ] ˙ [ ˙ B / y ] ˙ ψ ↔ χ