This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
sbc3ie
Metamath Proof Explorer
Description: Conversion of implicit substitution to explicit class substitution.
(Contributed by Mario Carneiro , 19-Jun-2014) (Revised by Mario
Carneiro , 29-Dec-2014)
Ref
Expression
Hypotheses
sbc3ie.1
⊢ A ∈ V
sbc3ie.2
⊢ B ∈ V
sbc3ie.3
⊢ C ∈ V
sbc3ie.4
⊢ x = A ∧ y = B ∧ z = C → φ ↔ ψ
Assertion
sbc3ie
⊢ [ ˙ A / x ] ˙ [ ˙ B / y ] ˙ [ ˙ C / z ] ˙ φ ↔ ψ
Proof
Step
Hyp
Ref
Expression
1
sbc3ie.1
⊢ A ∈ V
2
sbc3ie.2
⊢ B ∈ V
3
sbc3ie.3
⊢ C ∈ V
4
sbc3ie.4
⊢ x = A ∧ y = B ∧ z = C → φ ↔ ψ
5
3
a1i
⊢ x = A ∧ y = B → C ∈ V
6
4
3expa
⊢ x = A ∧ y = B ∧ z = C → φ ↔ ψ
7
5 6
sbcied
⊢ x = A ∧ y = B → [ ˙ C / z ] ˙ φ ↔ ψ
8
1 2 7
sbc2ie
⊢ [ ˙ A / x ] ˙ [ ˙ B / y ] ˙ [ ˙ C / z ] ˙ φ ↔ ψ