This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem rmobidv

Description: Formula-building rule for restricted at-most-one quantifier (deduction form). (Contributed by NM, 16-Jun-2017)

Ref Expression
Hypothesis rmobidv.1 φ ψ χ
Assertion rmobidv φ * x A ψ * x A χ

Proof

Step Hyp Ref Expression
1 rmobidv.1 φ ψ χ
2 1 adantr φ x A ψ χ
3 2 rmobidva φ * x A ψ * x A χ