This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted existential uniqueness and at-most-one quantifier
rmoeq1f
Metamath Proof Explorer
Description: Equality theorem for restricted at-most-one quantifier, with
bound-variable hypotheses instead of distinct variable restrictions.
(Contributed by Alexander van der Vekens , 17-Jun-2017)
Ref
Expression
Hypotheses
rmoeq1f.1
⊢ Ⅎ _ x A
rmoeq1f.2
⊢ Ⅎ _ x B
Assertion
rmoeq1f
⊢ A = B → ∃ * x ∈ A φ ↔ ∃ * x ∈ B φ
Proof
Step
Hyp
Ref
Expression
1
rmoeq1f.1
⊢ Ⅎ _ x A
2
rmoeq1f.2
⊢ Ⅎ _ x B
3
1 2
nfeq
⊢ Ⅎ x A = B
4
eleq2
⊢ A = B → x ∈ A ↔ x ∈ B
5
4
anbi1d
⊢ A = B → x ∈ A ∧ φ ↔ x ∈ B ∧ φ
6
3 5
mobid
⊢ A = B → ∃ * x x ∈ A ∧ φ ↔ ∃ * x x ∈ B ∧ φ
7
df-rmo
⊢ ∃ * x ∈ A φ ↔ ∃ * x x ∈ A ∧ φ
8
df-rmo
⊢ ∃ * x ∈ B φ ↔ ∃ * x x ∈ B ∧ φ
9
6 7 8
3bitr4g
⊢ A = B → ∃ * x ∈ A φ ↔ ∃ * x ∈ B φ