This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted existential uniqueness and at-most-one quantifier
reueq1f
Metamath Proof Explorer
Description: Equality theorem for restricted unique existential quantifier, with
bound-variable hypotheses instead of distinct variable restrictions.
(Contributed by NM , 5-Apr-2004) (Revised by Andrew Salmon , 11-Jul-2011)
Ref
Expression
Hypotheses
rmoeq1f.1
⊢ Ⅎ _ x A
rmoeq1f.2
⊢ Ⅎ _ x B
Assertion
reueq1f
⊢ A = B → ∃! x ∈ A φ ↔ ∃! x ∈ B φ
Proof
Step
Hyp
Ref
Expression
1
rmoeq1f.1
⊢ Ⅎ _ x A
2
rmoeq1f.2
⊢ Ⅎ _ x B
3
1 2
rexeqf
⊢ A = B → ∃ x ∈ A φ ↔ ∃ x ∈ B φ
4
1 2
rmoeq1f
⊢ A = B → ∃ * x ∈ A φ ↔ ∃ * x ∈ B φ
5
3 4
anbi12d
⊢ A = B → ∃ x ∈ A φ ∧ ∃ * x ∈ A φ ↔ ∃ x ∈ B φ ∧ ∃ * x ∈ B φ
6
reu5
⊢ ∃! x ∈ A φ ↔ ∃ x ∈ A φ ∧ ∃ * x ∈ A φ
7
reu5
⊢ ∃! x ∈ B φ ↔ ∃ x ∈ B φ ∧ ∃ * x ∈ B φ
8
5 6 7
3bitr4g
⊢ A = B → ∃! x ∈ A φ ↔ ∃! x ∈ B φ