This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation of a product in a ring. ( mulneg1 analog.) Compared with rngmneg1 , the proof is shorter making use of the existence of a ring unity. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringneglmul.b | ||
| ringneglmul.t | |||
| ringneglmul.n | |||
| ringneglmul.r | |||
| ringneglmul.x | |||
| ringneglmul.y | |||
| Assertion | ringmneg1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringneglmul.b | ||
| 2 | ringneglmul.t | ||
| 3 | ringneglmul.n | ||
| 4 | ringneglmul.r | ||
| 5 | ringneglmul.x | ||
| 6 | ringneglmul.y | ||
| 7 | ringgrp | ||
| 8 | 4 7 | syl | |
| 9 | eqid | ||
| 10 | 1 9 | ringidcl | |
| 11 | 4 10 | syl | |
| 12 | 1 3 | grpinvcl | |
| 13 | 8 11 12 | syl2anc | |
| 14 | 1 2 | ringass | |
| 15 | 4 13 5 6 14 | syl13anc | |
| 16 | 1 2 9 3 4 5 | ringnegl | |
| 17 | 16 | oveq1d | |
| 18 | 1 2 | ringcl | |
| 19 | 4 5 6 18 | syl3anc | |
| 20 | 1 2 9 3 4 19 | ringnegl | |
| 21 | 15 17 20 | 3eqtr3d |