This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
rexeqfOLD
Metamath Proof Explorer
Description: Obsolete version of rexeqf as of 9-Mar-2025. (Contributed by NM , 9-Oct-2003) (Revised by Andrew Salmon , 11-Jul-2011)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Hypotheses
raleqf.1
⊢ Ⅎ _ x A
raleqf.2
⊢ Ⅎ _ x B
Assertion
rexeqfOLD
⊢ A = B → ∃ x ∈ A φ ↔ ∃ x ∈ B φ
Proof
Step
Hyp
Ref
Expression
1
raleqf.1
⊢ Ⅎ _ x A
2
raleqf.2
⊢ Ⅎ _ x B
3
1 2
nfeq
⊢ Ⅎ x A = B
4
eleq2
⊢ A = B → x ∈ A ↔ x ∈ B
5
4
anbi1d
⊢ A = B → x ∈ A ∧ φ ↔ x ∈ B ∧ φ
6
3 5
exbid
⊢ A = B → ∃ x x ∈ A ∧ φ ↔ ∃ x x ∈ B ∧ φ
7
df-rex
⊢ ∃ x ∈ A φ ↔ ∃ x x ∈ A ∧ φ
8
df-rex
⊢ ∃ x ∈ B φ ↔ ∃ x x ∈ B ∧ φ
9
6 7 8
3bitr4g
⊢ A = B → ∃ x ∈ A φ ↔ ∃ x ∈ B φ