This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
raleqbid
Metamath Proof Explorer
Description: Equality deduction for restricted universal quantifier. See raleqbidv for a version based on fewer axioms. (Contributed by Thierry Arnoux , 8-Mar-2017)
Ref
Expression
Hypotheses
raleqbid.0
⊢ Ⅎ x φ
raleqbid.1
⊢ Ⅎ _ x A
raleqbid.2
⊢ Ⅎ _ x B
raleqbid.3
⊢ φ → A = B
raleqbid.4
⊢ φ → ψ ↔ χ
Assertion
raleqbid
⊢ φ → ∀ x ∈ A ψ ↔ ∀ x ∈ B χ
Proof
Step
Hyp
Ref
Expression
1
raleqbid.0
⊢ Ⅎ x φ
2
raleqbid.1
⊢ Ⅎ _ x A
3
raleqbid.2
⊢ Ⅎ _ x B
4
raleqbid.3
⊢ φ → A = B
5
raleqbid.4
⊢ φ → ψ ↔ χ
6
2 3
raleqf
⊢ A = B → ∀ x ∈ A ψ ↔ ∀ x ∈ B ψ
7
4 6
syl
⊢ φ → ∀ x ∈ A ψ ↔ ∀ x ∈ B ψ
8
1 5
ralbid
⊢ φ → ∀ x ∈ B ψ ↔ ∀ x ∈ B χ
9
7 8
bitrd
⊢ φ → ∀ x ∈ A ψ ↔ ∀ x ∈ B χ