This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
rexeqbidvvOLD
Metamath Proof Explorer
Description: Obsolete version of rexeqbidvv as of 9-Mar-2025. (Contributed by Wolf
Lammen , 25-Sep-2024) (New usage is discouraged.)
(Proof modification is discouraged.)
Ref
Expression
Hypotheses
raleqbidvv.1
⊢ φ → A = B
raleqbidvv.2
⊢ φ → ψ ↔ χ
Assertion
rexeqbidvvOLD
⊢ φ → ∃ x ∈ A ψ ↔ ∃ x ∈ B χ
Proof
Step
Hyp
Ref
Expression
1
raleqbidvv.1
⊢ φ → A = B
2
raleqbidvv.2
⊢ φ → ψ ↔ χ
3
2
notbid
⊢ φ → ¬ ψ ↔ ¬ χ
4
1 3
raleqbidvv
⊢ φ → ∀ x ∈ A ¬ ψ ↔ ∀ x ∈ B ¬ χ
5
ralnex
⊢ ∀ x ∈ A ¬ ψ ↔ ¬ ∃ x ∈ A ψ
6
ralnex
⊢ ∀ x ∈ B ¬ χ ↔ ¬ ∃ x ∈ B χ
7
4 5 6
3bitr3g
⊢ φ → ¬ ∃ x ∈ A ψ ↔ ¬ ∃ x ∈ B χ
8
7
con4bid
⊢ φ → ∃ x ∈ A ψ ↔ ∃ x ∈ B χ