This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
reloggim
Metamath Proof Explorer
Description: The natural logarithm is a group isomorphism from the group of positive
reals under multiplication to the group of reals under addition.
(Contributed by Mario Carneiro , 21-Jun-2015) (Revised by Thierry
Arnoux , 30-Jun-2019)
Ref
Expression
Hypothesis
reloggim.1
⊢ P = mulGrp ℂ fld ↾ 𝑠 ℝ +
Assertion
reloggim
⊢ log ↾ ℝ + ∈ P GrpIso ℝ fld
Proof
Step
Hyp
Ref
Expression
1
reloggim.1
⊢ P = mulGrp ℂ fld ↾ 𝑠 ℝ +
2
dfrelog
⊢ log ↾ ℝ + = exp ↾ ℝ -1
3
1
reefgim
⊢ exp ↾ ℝ ∈ ℝ fld GrpIso P
4
gimcnv
⊢ exp ↾ ℝ ∈ ℝ fld GrpIso P → exp ↾ ℝ -1 ∈ P GrpIso ℝ fld
5
3 4
ax-mp
⊢ exp ↾ ℝ -1 ∈ P GrpIso ℝ fld
6
2 5
eqeltri
⊢ log ↾ ℝ + ∈ P GrpIso ℝ fld