This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralimdvva
Metamath Proof Explorer
Description: Deduction doubly quantifying both antecedent and consequent, based on
Theorem 19.20 of Margaris p. 90 ( alim ). (Contributed by AV , 27-Nov-2019)
Ref
Expression
Hypothesis
ralimdvva.1
⊢ φ ∧ x ∈ A ∧ y ∈ B → ψ → χ
Assertion
ralimdvva
⊢ φ → ∀ x ∈ A ∀ y ∈ B ψ → ∀ x ∈ A ∀ y ∈ B χ
Proof
Step
Hyp
Ref
Expression
1
ralimdvva.1
⊢ φ ∧ x ∈ A ∧ y ∈ B → ψ → χ
2
1
anassrs
⊢ φ ∧ x ∈ A ∧ y ∈ B → ψ → χ
3
2
ralimdva
⊢ φ ∧ x ∈ A → ∀ y ∈ B ψ → ∀ y ∈ B χ
4
3
ralimdva
⊢ φ → ∀ x ∈ A ∀ y ∈ B ψ → ∀ x ∈ A ∀ y ∈ B χ