This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralrimdvva
Metamath Proof Explorer
Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted
quantifier version with double quantification.) (Contributed by NM , 2-Feb-2008)
Ref
Expression
Hypothesis
ralrimdvva.1
⊢ φ ∧ x ∈ A ∧ y ∈ B → ψ → χ
Assertion
ralrimdvva
⊢ φ → ψ → ∀ x ∈ A ∀ y ∈ B χ
Proof
Step
Hyp
Ref
Expression
1
ralrimdvva.1
⊢ φ ∧ x ∈ A ∧ y ∈ B → ψ → χ
2
1
ex
⊢ φ → x ∈ A ∧ y ∈ B → ψ → χ
3
2
com23
⊢ φ → ψ → x ∈ A ∧ y ∈ B → χ
4
3
ralrimdvv
⊢ φ → ψ → ∀ x ∈ A ∀ y ∈ B χ