This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
raleqbidva.1 |
|
|
|
raleqbidva.2 |
|
|
Assertion |
raleqbidva |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
raleqbidva.1 |
|
| 2 |
|
raleqbidva.2 |
|
| 3 |
2
|
ralbidva |
|
| 4 |
1
|
raleqdv |
|
| 5 |
3 4
|
bitrd |
|