This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralcom4
Metamath Proof Explorer
Description: Commutation of restricted and unrestricted universal quantifiers.
(Contributed by NM , 26-Mar-2004) (Proof shortened by Andrew Salmon , 8-Jun-2011) Reduce axiom dependencies. (Revised by BJ , 13-Jun-2019)
(Proof shortened by Wolf Lammen , 31-Oct-2024)
Ref
Expression
Assertion
ralcom4
⊢ ∀ x ∈ A ∀ y φ ↔ ∀ y ∀ x ∈ A φ
Proof
Step
Hyp
Ref
Expression
1
19.21v
⊢ ∀ y x ∈ A → φ ↔ x ∈ A → ∀ y φ
2
1
albii
⊢ ∀ x ∀ y x ∈ A → φ ↔ ∀ x x ∈ A → ∀ y φ
3
alcom
⊢ ∀ y ∀ x x ∈ A → φ ↔ ∀ x ∀ y x ∈ A → φ
4
df-ral
⊢ ∀ x ∈ A ∀ y φ ↔ ∀ x x ∈ A → ∀ y φ
5
2 3 4
3bitr4ri
⊢ ∀ x ∈ A ∀ y φ ↔ ∀ y ∀ x x ∈ A → φ
6
df-ral
⊢ ∀ x ∈ A φ ↔ ∀ x x ∈ A → φ
7
6
albii
⊢ ∀ y ∀ x ∈ A φ ↔ ∀ y ∀ x x ∈ A → φ
8
5 7
bitr4i
⊢ ∀ x ∈ A ∀ y φ ↔ ∀ y ∀ x ∈ A φ