This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralbida
Metamath Proof Explorer
Description: Formula-building rule for restricted universal quantifier (deduction
form). (Contributed by NM , 6-Oct-2003) (Proof shortened by Wolf
Lammen , 31-Oct-2024)
Ref
Expression
Hypotheses
ralbida.1
⊢ Ⅎ x φ
ralbida.2
⊢ φ ∧ x ∈ A → ψ ↔ χ
Assertion
ralbida
⊢ φ → ∀ x ∈ A ψ ↔ ∀ x ∈ A χ
Proof
Step
Hyp
Ref
Expression
1
ralbida.1
⊢ Ⅎ x φ
2
ralbida.2
⊢ φ ∧ x ∈ A → ψ ↔ χ
3
2
biimpd
⊢ φ ∧ x ∈ A → ψ → χ
4
1 3
ralimdaa
⊢ φ → ∀ x ∈ A ψ → ∀ x ∈ A χ
5
2
biimprd
⊢ φ ∧ x ∈ A → χ → ψ
6
1 5
ralimdaa
⊢ φ → ∀ x ∈ A χ → ∀ x ∈ A ψ
7
4 6
impbid
⊢ φ → ∀ x ∈ A ψ ↔ ∀ x ∈ A χ