This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralimdaa
Metamath Proof Explorer
Description: Deduction quantifying both antecedent and consequent, based on Theorem
19.20 of Margaris p. 90. (Contributed by NM , 22-Sep-2003) (Proof
shortened by Wolf Lammen , 29-Dec-2019)
Ref
Expression
Hypotheses
ralimdaa.1
⊢ Ⅎ x φ
ralimdaa.2
⊢ φ ∧ x ∈ A → ψ → χ
Assertion
ralimdaa
⊢ φ → ∀ x ∈ A ψ → ∀ x ∈ A χ
Proof
Step
Hyp
Ref
Expression
1
ralimdaa.1
⊢ Ⅎ x φ
2
ralimdaa.2
⊢ φ ∧ x ∈ A → ψ → χ
3
2
ex
⊢ φ → x ∈ A → ψ → χ
4
1 3
ralrimi
⊢ φ → ∀ x ∈ A ψ → χ
5
ralim
⊢ ∀ x ∈ A ψ → χ → ∀ x ∈ A ψ → ∀ x ∈ A χ
6
4 5
syl
⊢ φ → ∀ x ∈ A ψ → ∀ x ∈ A χ