This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
r2ex
Metamath Proof Explorer
Description: Double restricted existential quantification. (Contributed by NM , 11-Nov-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen , 10-Jan-2020)
Ref
Expression
Assertion
r2ex
⊢ ∃ x ∈ A ∃ y ∈ B φ ↔ ∃ x ∃ y x ∈ A ∧ y ∈ B ∧ φ
Proof
Step
Hyp
Ref
Expression
1
r2al
⊢ ∀ x ∈ A ∀ y ∈ B ¬ φ ↔ ∀ x ∀ y x ∈ A ∧ y ∈ B → ¬ φ
2
1
r2exlem
⊢ ∃ x ∈ A ∃ y ∈ B φ ↔ ∃ x ∃ y x ∈ A ∧ y ∈ B ∧ φ