This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
r2al
Metamath Proof Explorer
Description: Double restricted universal quantification. (Contributed by NM , 19-Nov-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen , 9-Jan-2020)
Ref
Expression
Assertion
r2al
⊢ ∀ x ∈ A ∀ y ∈ B φ ↔ ∀ x ∀ y x ∈ A ∧ y ∈ B → φ
Proof
Step
Hyp
Ref
Expression
1
19.21v
⊢ ∀ y x ∈ A → y ∈ B → φ ↔ x ∈ A → ∀ y y ∈ B → φ
2
1
r2allem
⊢ ∀ x ∈ A ∀ y ∈ B φ ↔ ∀ x ∀ y x ∈ A ∧ y ∈ B → φ