This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem r2al

Description: Double restricted universal quantification. (Contributed by NM, 19-Nov-1995) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Jan-2020)

Ref Expression
Assertion r2al x A y B φ x y x A y B φ

Proof

Step Hyp Ref Expression
1 19.21v y x A y B φ x A y y B φ
2 1 r2allem x A y B φ x y x A y B φ