This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
r1sssuc
Metamath Proof Explorer
Description: The value of the cumulative hierarchy of sets function is a subset of its
value at the successor. JFM CLASSES1 Th. 39. (Contributed by FL , 20-Apr-2011)
Ref
Expression
Assertion
r1sssuc
⊢ A ∈ On → R 1 ⁡ A ⊆ R 1 ⁡ suc ⁡ A
Proof
Step
Hyp
Ref
Expression
1
r1tr
⊢ Tr ⁡ R 1 ⁡ A
2
dftr4
⊢ Tr ⁡ R 1 ⁡ A ↔ R 1 ⁡ A ⊆ 𝒫 R 1 ⁡ A
3
1 2
mpbi
⊢ R 1 ⁡ A ⊆ 𝒫 R 1 ⁡ A
4
r1suc
⊢ A ∈ On → R 1 ⁡ suc ⁡ A = 𝒫 R 1 ⁡ A
5
3 4
sseqtrrid
⊢ A ∈ On → R 1 ⁡ A ⊆ R 1 ⁡ suc ⁡ A