This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
r1suc
Metamath Proof Explorer
Description: Value of the cumulative hierarchy of sets function at a successor
ordinal. Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by NM , 2-Sep-2003) (Revised by Mario Carneiro , 10-Sep-2013)
Ref
Expression
Assertion
r1suc
⊢ A ∈ On → R 1 ⁡ suc ⁡ A = 𝒫 R 1 ⁡ A
Proof
Step
Hyp
Ref
Expression
1
r1sucg
⊢ A ∈ dom ⁡ R 1 → R 1 ⁡ suc ⁡ A = 𝒫 R 1 ⁡ A
2
r1fnon
⊢ R 1 Fn On
3
2
fndmi
⊢ dom ⁡ R 1 = On
4
3
eqcomi
⊢ On = dom ⁡ R 1
5
1 4
eleq2s
⊢ A ∈ On → R 1 ⁡ suc ⁡ A = 𝒫 R 1 ⁡ A