This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
r19.21v
Metamath Proof Explorer
Description: Restricted quantifier version of 19.21v . (Contributed by NM , 15-Oct-2003) (Proof shortened by Andrew Salmon , 30-May-2011) Reduce
dependencies on axioms. (Revised by Wolf Lammen , 2-Jan-2020) (Proof
shortened by Wolf Lammen , 11-Dec-2024)
Ref
Expression
Assertion
r19.21v
⊢ ∀ x ∈ A φ → ψ ↔ φ → ∀ x ∈ A ψ
Proof
Step
Hyp
Ref
Expression
1
pm2.27
⊢ φ → φ → ψ → ψ
2
1
ralimdv
⊢ φ → ∀ x ∈ A φ → ψ → ∀ x ∈ A ψ
3
2
com12
⊢ ∀ x ∈ A φ → ψ → φ → ∀ x ∈ A ψ
4
pm2.21
⊢ ¬ φ → φ → ψ
5
4
ralrimivw
⊢ ¬ φ → ∀ x ∈ A φ → ψ
6
ax-1
⊢ ψ → φ → ψ
7
6
ralimi
⊢ ∀ x ∈ A ψ → ∀ x ∈ A φ → ψ
8
5 7
ja
⊢ φ → ∀ x ∈ A ψ → ∀ x ∈ A φ → ψ
9
3 8
impbii
⊢ ∀ x ∈ A φ → ψ ↔ φ → ∀ x ∈ A ψ