This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
r10
Metamath Proof Explorer
Theorem r10
Description: Value of the cumulative hierarchy of sets function at (/) . Part of
Definition 9.9 of TakeutiZaring p. 76. (Contributed by NM , 2-Sep-2003)
(Revised by Mario Carneiro , 10-Sep-2013)
Ref
Expression
Assertion
r10
⊢ R 1 ⁡ ∅ = ∅
Proof
Step
Hyp
Ref
Expression
1
df-r1
⊢ R 1 = rec ⁡ x ∈ V ⟼ 𝒫 x ∅
2
1
fveq1i
⊢ R 1 ⁡ ∅ = rec ⁡ x ∈ V ⟼ 𝒫 x ∅ ⁡ ∅
3
0ex
⊢ ∅ ∈ V
4
3
rdg0
⊢ rec ⁡ x ∈ V ⟼ 𝒫 x ∅ ⁡ ∅ = ∅
5
2 4
eqtri
⊢ R 1 ⁡ ∅ = ∅