This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
qliftfund
Metamath Proof Explorer
Description: The function F is the unique function defined by
F [ x ] = A , provided that the well-definedness condition
holds. (Contributed by Mario Carneiro , 23-Dec-2016) (Revised by AV , 3-Aug-2024)
Ref
Expression
Hypotheses
qlift.1
⊢ F = ran ⁡ x ∈ X ⟼ x R A
qlift.2
⊢ φ ∧ x ∈ X → A ∈ Y
qlift.3
⊢ φ → R Er X
qlift.4
⊢ φ → X ∈ V
qliftfun.4
⊢ x = y → A = B
qliftfund.6
⊢ φ ∧ x R y → A = B
Assertion
qliftfund
⊢ φ → Fun ⁡ F
Proof
Step
Hyp
Ref
Expression
1
qlift.1
⊢ F = ran ⁡ x ∈ X ⟼ x R A
2
qlift.2
⊢ φ ∧ x ∈ X → A ∈ Y
3
qlift.3
⊢ φ → R Er X
4
qlift.4
⊢ φ → X ∈ V
5
qliftfun.4
⊢ x = y → A = B
6
qliftfund.6
⊢ φ ∧ x R y → A = B
7
6
ex
⊢ φ → x R y → A = B
8
7
alrimivv
⊢ φ → ∀ x ∀ y x R y → A = B
9
1 2 3 4 5
qliftfun
⊢ φ → Fun ⁡ F ↔ ∀ x ∀ y x R y → A = B
10
8 9
mpbird
⊢ φ → Fun ⁡ F