This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem pssinf

Description: A set equinumerous to a proper subset of itself is infinite. Corollary 6D(a) of Enderton p. 136. (Contributed by NM, 2-Jun-1998)

Ref Expression
Assertion pssinf A B A B ¬ B Fin

Proof

Step Hyp Ref Expression
1 php3 B Fin A B A B
2 1 ex B Fin A B A B
3 sdomnen A B ¬ A B
4 2 3 syl6com A B B Fin ¬ A B
5 4 con2d A B A B ¬ B Fin
6 5 imp A B A B ¬ B Fin