This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem prcssprc

Description: The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020)

Ref Expression
Assertion prcssprc A B A V B V

Proof

Step Hyp Ref Expression
1 ssexg A B B V A V
2 1 ex A B B V A V
3 2 nelcon3d A B A V B V
4 3 imp A B A V B V