This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the class of universal property for opposite functors. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uprcl2a.x | No typesetting found for |- ( ph -> X ( G ( O UP P ) W ) M ) with typecode |- | |
| oppfuprcl.g | No typesetting found for |- G = ( oppFunc ` F ) with typecode |- | ||
| oppfuprcl.o | |||
| oppfuprcl.p | |||
| oppfuprcl.d | |||
| oppfuprcl.e | |||
| Assertion | oppfuprcl |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uprcl2a.x | Could not format ( ph -> X ( G ( O UP P ) W ) M ) : No typesetting found for |- ( ph -> X ( G ( O UP P ) W ) M ) with typecode |- | |
| 2 | oppfuprcl.g | Could not format G = ( oppFunc ` F ) : No typesetting found for |- G = ( oppFunc ` F ) with typecode |- | |
| 3 | oppfuprcl.o | ||
| 4 | oppfuprcl.p | ||
| 5 | oppfuprcl.d | ||
| 6 | oppfuprcl.e | ||
| 7 | 1 | uprcl2a | |
| 8 | 2 7 | eqeltrrid | Could not format ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) : No typesetting found for |- ( ph -> ( oppFunc ` F ) e. ( O Func P ) ) with typecode |- |
| 9 | 3 4 5 6 8 | funcoppc5 |