This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem omlop

Description: An orthomodular lattice is an orthoposet. (Contributed by NM, 6-Nov-2011)

Ref Expression
Assertion omlop K OML K OP

Proof

Step Hyp Ref Expression
1 omlol K OML K OL
2 olop K OL K OP
3 1 2 syl K OML K OP