This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem omllat

Description: An orthomodular lattice is a lattice. (Contributed by NM, 6-Nov-2011)

Ref Expression
Assertion omllat K OML K Lat

Proof

Step Hyp Ref Expression
1 omlol K OML K OL
2 ollat K OL K Lat
3 1 2 syl K OML K Lat