This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem nsyli

Description: A negated syllogism inference. (Contributed by NM, 3-May-1994)

Ref Expression
Hypotheses nsyli.1 φ ψ χ
nsyli.2 θ ¬ χ
Assertion nsyli φ θ ¬ ψ

Proof

Step Hyp Ref Expression
1 nsyli.1 φ ψ χ
2 nsyli.2 θ ¬ χ
3 1 con3d φ ¬ χ ¬ ψ
4 2 3 syl5 φ θ ¬ ψ