This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem nsyld

Description: A negated syllogism deduction. (Contributed by NM, 9-Apr-2005)

Ref Expression
Hypotheses nsyld.1 φ ψ ¬ χ
nsyld.2 φ τ χ
Assertion nsyld φ ψ ¬ τ

Proof

Step Hyp Ref Expression
1 nsyld.1 φ ψ ¬ χ
2 nsyld.2 φ τ χ
3 2 con3d φ ¬ χ ¬ τ
4 1 3 syld φ ψ ¬ τ