This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem nsyl5

Description: A negated syllogism inference. (Contributed by Wolf Lammen, 20-May-2024)

Ref Expression
Hypotheses nsyl4.1 φ ψ
nsyl4.2 ¬ φ χ
Assertion nsyl5 ¬ ψ χ

Proof

Step Hyp Ref Expression
1 nsyl4.1 φ ψ
2 nsyl4.2 ¬ φ χ
3 1 2 nsyl4 ¬ χ ψ
4 3 con1i ¬ ψ χ