This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm on a normed group is a function into the reals. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | ||
| nmf.n | |||
| Assertion | nmf |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | ||
| 2 | nmf.n | ||
| 3 | ngpgrp | ||
| 4 | eqid | ||
| 5 | 1 4 | ngpmet | |
| 6 | eqid | ||
| 7 | 2 1 6 4 | nmf2 | |
| 8 | 3 5 7 | syl2anc |