This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
nfbidf
Metamath Proof Explorer
Description: An equality theorem for effectively not free. (Contributed by Mario
Carneiro , 4-Oct-2016) df-nf changed. (Revised by Wolf Lammen , 18-Sep-2021)
Ref
Expression
Hypotheses
albid.1
⊢ Ⅎ x φ
albid.2
⊢ φ → ψ ↔ χ
Assertion
nfbidf
⊢ φ → Ⅎ x ψ ↔ Ⅎ x χ
Proof
Step
Hyp
Ref
Expression
1
albid.1
⊢ Ⅎ x φ
2
albid.2
⊢ φ → ψ ↔ χ
3
1 2
exbid
⊢ φ → ∃ x ψ ↔ ∃ x χ
4
1 2
albid
⊢ φ → ∀ x ψ ↔ ∀ x χ
5
3 4
imbi12d
⊢ φ → ∃ x ψ → ∀ x ψ ↔ ∃ x χ → ∀ x χ
6
df-nf
⊢ Ⅎ x ψ ↔ ∃ x ψ → ∀ x ψ
7
df-nf
⊢ Ⅎ x χ ↔ ∃ x χ → ∀ x χ
8
5 6 7
3bitr4g
⊢ φ → Ⅎ x ψ ↔ Ⅎ x χ