This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
nelb
Metamath Proof Explorer
Description: A definition of -. A e. B . (Contributed by Thierry Arnoux , 20-Nov-2023) (Proof shortened by SN , 23-Jan-2024) (Proof shortened by Wolf Lammen , 3-Nov-2024)
Ref
Expression
Assertion
nelb
⊢ ¬ A ∈ B ↔ ∀ x ∈ B x ≠ A
Proof
Step
Hyp
Ref
Expression
1
df-ne
⊢ x ≠ A ↔ ¬ x = A
2
1
ralbii
⊢ ∀ x ∈ B x ≠ A ↔ ∀ x ∈ B ¬ x = A
3
ralnex
⊢ ∀ x ∈ B ¬ x = A ↔ ¬ ∃ x ∈ B x = A
4
2 3
bitr2i
⊢ ¬ ∃ x ∈ B x = A ↔ ∀ x ∈ B x ≠ A
5
risset
⊢ A ∈ B ↔ ∃ x ∈ B x = A
6
4 5
xchnxbir
⊢ ¬ A ∈ B ↔ ∀ x ∈ B x ≠ A